JEE MAIN 2023 JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : $\mathbf{3 0 0}$

SUBJECT - PHYSICS

Accomplish your DREAM with Reliable FACULTY TEAM

TARGET JEE Adv. 2024
Not satisfied with your JEE Performance?

Join

For Class XII Passed / Repeater Students

One Year Classroom Course for Complete

 JEE (Main+Adv) SyllabusSTARTING FROM:
15 \& 29 MARCH'23

Unicoshing Potential

PHYSICS

1. The kinetic energy of a particle is 1000 joule with the mass 2 kg . Find the momentum for the particle?
(1) $200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(2) $400 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(3) $800 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(4) $600 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Ans. (1)
Sol. $\quad \mathrm{P}=\sqrt{2 \mathrm{~m}(\mathrm{~K} \mathrm{E})}$
$P=\sqrt{2 \times 2 \times 1000}=200 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
2. A Particle is projected vertically upward reaches 136 m height. What will be the maximum range for the particle projected with same speed?
(1) 272 m
(2) 280 m
(3) 290 m
(4) 300 m

Ans. (1)

Sol. $\frac{\mathrm{U}^{2}}{2 \mathrm{~g}}=\mathrm{H}_{\text {max }}=136 \mathrm{~m}$
for maximum ranges $\mathrm{R}=\frac{\mathrm{U}^{2}}{\mathrm{~g}}$
$\mathrm{R}_{\text {max }}=2 \times \mathrm{H}_{\text {max }}$
$\mathrm{R}_{\text {max }}=272 \mathrm{~m}$
3. \quad Given system is performing SHM with time period $\mathrm{T}=\frac{\pi}{\sqrt{\mathrm{x}}}$. Find x (all surfaces are smooth $)$?

Ans. (5)

Sol. $\quad \mathrm{T}=2 \pi \sqrt{\frac{2}{40}}=\frac{\pi}{\sqrt{5}} \quad \therefore \mathrm{x}=5$

Unicoshing Potential
4. Find tension in string if all surfaces are smooth and string is massless.

(1) $4(\sqrt{3}+1) \mathrm{N}$
(2) $4(\sqrt{3}-1) \mathrm{N}$
(3) $(4 \sqrt{3}+1) \mathrm{N}$
(4) $(4 \sqrt{3}-1) \mathrm{N}$

Ans. (1)

Sol.

$\mathrm{a}=\frac{4 \mathrm{~g} \sin 30^{\circ}-\lg \sin 60^{\circ}}{5}$
$=\frac{20-5 \sqrt{3}}{5}$
$=(4-\sqrt{3}) \mathrm{m} / \mathrm{s}^{2}$
$4 g \sin 30^{\circ}-T=4 a$
$\mathrm{T}=20-4(4-\sqrt{3})$
$=20-16+4 \sqrt{3}$
$=4+4 \sqrt{3}=4(\sqrt{3}+1) \mathrm{N}$
5. Radius of gyration of solid sphere about axis $P Q$ is $\sqrt{x} \frac{R}{5}$ where R is radius of sphere. Find the value of x ?

Ans. 110

Uniceshing Potential
Sol. $\quad \mathrm{I}_{\mathrm{com}}=\frac{2}{5} \mathrm{MR}^{2}$
||axis theorem

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{PQ}}=\mathrm{Icom}+\mathrm{m}(2 \mathrm{R})^{2}=\frac{2}{5} \mathrm{MR}^{2}+4 \mathrm{MR}^{2}=\frac{22}{5} \mathrm{MR}^{2} \\
& \mathrm{I}_{\mathrm{PQ}}=\mathrm{MK}^{2}
\end{aligned}
$$

$$
\frac{25}{5} \mathrm{MR}^{2}=\mathrm{MK}^{2} \Rightarrow \mathrm{~K}=\sqrt{\frac{25}{5}} \times \mathrm{R}=\sqrt{110} \frac{\mathrm{R}}{5}
$$

6. If equation of wave is given by $y=0.05 \sin (2 x-4 t)$. Find velocity of wave?
(1) 1
(2) 2
(3) 4
(4) 05

Ans. (2)
Sol. $V=\frac{\text { coefficient of } t}{\text { coefficient of } x}$
$=\frac{4}{2}$
$=2 \mathrm{~m} / \mathrm{sec}$
7. In a hydrogen atom first line wavelength of paschen series is $\lambda=720 \mathrm{~nm}$. Find out second line wavelength of same series?
(1) 70.31 nm
(2) 90 nm
(3) 150 nm
(4) 200 nm

Ans. (1)

Sol. $\quad \frac{1}{\lambda} \propto\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)$
$1^{\text {st }}$ wavelenth $\frac{1}{\lambda_{1}} \propto\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)$
$2^{\text {nd }}$ wavelenth $\frac{1}{\lambda_{1}} \propto\left(\frac{1}{3^{2}}-\frac{1}{5^{2}}\right)$
Taking ratio
$\frac{\lambda_{2}}{\lambda_{1}}=\frac{25}{256}$
$\lambda_{2}=\frac{720 \times 25}{256} \approx 70.31 \mathrm{~nm}$

Unicoshoing Poteminal
8. Figure shows current carrying coil of radius R. Find $\frac{B_{\text {cente }}}{B_{\text {axis }} \text { at } r=R}$.

(1) $4 \sqrt{2}$
(2) $2 \sqrt{2}$
(3) $3 \sqrt{2}$
(4) $\sqrt{2}$

Ans. (2)
Sol. $\quad B_{C}=\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$
$B_{r=R}=\frac{\mu_{0} i^{2}}{2\left(R^{2}+R^{2}\right)^{3 / 2}}=\frac{\mu_{0} i}{4 \sqrt{2} R}$
$\frac{\mathrm{B}_{\mathrm{C}}}{\mathrm{B}_{\mathrm{r}=\mathrm{R}}}=\frac{\mu_{0} \mathrm{i} 4 \sqrt{2} \mathrm{R}}{2 \mathrm{R} \mu_{0} \mathrm{i}}=2 \sqrt{2}$
9. Two charges $\mathrm{q}_{1} \& \mathrm{q}_{2}$ are placed in a di-electric medium ' K ' at a separation d and resultant force on any charge is F_{0}. If both are placed in air, then what should be the separation between them so that they experience same force?
(1) $r=K d$
(2) $r=d$
(3) $r=d \sqrt{K}$
(4) $r=K^{3 / 2} d$

Ans. (3)
10. If a magnetic force on 10 cm portion of one wire is F_{1}. Now distance is halved and current gets doubled, then force on same portion is xF_{1}. Find x .

Ans. 8

Sol. $\quad \mathrm{F}_{1}=\frac{\mu_{0}{ }^{2}}{2 \pi \mathrm{r}} \times{ }_{i}$

$$
\begin{aligned}
& \mathrm{F}_{1} \propto \frac{\mathrm{i}^{2}}{\mathrm{r}} \\
& \frac{\mathrm{~F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{i}_{1}^{2} / \mathrm{r}_{1}}{\mathrm{i}_{2}^{2} / \mathrm{r}_{2}}=\frac{1}{8}
\end{aligned}
$$

$$
\mathrm{F}_{2}=8 \mathrm{~F}_{1}
$$

$$
\therefore \quad \mathrm{x}=8
$$

11. A circular loop of radius $\frac{10}{\sqrt{\pi}} \mathrm{~cm}$ is placed in a uniform time varying magnetic field with field being perpendicular to the plane of the loop. If the field decreases from 0.5 T to zero in 0.5 sec , then induced emf in the loop at 0.25 sec . is :
(1) 1 mV
(2) 10 mV
(3) 5 mV
(4) 100 mV

Ans. (2)
Sol. $|\varepsilon|=\mathrm{A} . \frac{\mathrm{dB}}{\mathrm{dt}}=\pi \times\left(\frac{100}{\pi} \times 10^{-4}\right) \times \frac{0.5}{0.5}=0.01$ Volt
12. Statement-1 : When light is incident from air to water then Brewster's angle is θ_{B} then if light is incident from water to air then Brewster's angle is $\frac{\pi}{2}-\theta_{B}$.

Statement-2 : When light goes from air to any medium of refractive index is then Brewster's angle $\left(\theta_{B}\right)$ is given by $\theta_{B}=\tan ^{-1}(\mu)$.
(1) both statement-1 and Statement-2 is true
(2) statement- 1 is true and statement- 2 is false
(3) statement- 1 is false and statement- 2 is true
(4) both statement-1 and statement-2 are false

Ans. (1)
Sol. $\mathrm{r}+\mathrm{r}^{\prime}=90^{\circ}$
$r^{\prime}=90^{\circ}-r$
but $\mathrm{r}=\mathrm{i}$
$r^{\prime}=90^{\circ}-\mathrm{i}$
Now if light is incident from water to air then angle of incidence is $\frac{\pi}{2}-\mathrm{i}$.

Uniceshing Potential
13. A cylinder has inner radius 2 mm and outer radius 4 mm . The resistivity of its material is $2.4 \times 10^{-5} \Omega \mathrm{~m}$ and its length is 3.14 m given. Find out its resistance between two ends?

Ans. 2
Sol. $\quad \mathrm{R}=\rho \frac{\frac{\square}{\mathrm{A}}}{}$
$\mathrm{R}=\frac{2.4 \times 10^{-5} \times 3.14}{\pi[16-4] \times 10^{-6}}$
$\mathrm{R}=2 \Omega$
14. Weight of an object on Earth is 18 N. Find out its weight (in N) at height 3200 km from the earth surface?

Ans. 8
Sol. $\mathrm{R}_{\mathrm{e}}=6400 \mathrm{Km}$

$$
\begin{aligned}
& \text { height }=3200 \mathrm{Km}=\left(\frac{\mathrm{R}_{\mathrm{e}}}{2}\right) \\
& \mathrm{W}_{\text {earth }}=18 \mathrm{~N}=\mathrm{m} \frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}{ }^{2}} \\
& \mathrm{~W}^{\prime}=\mathrm{m} \frac{\mathrm{GM}_{\mathrm{e}}}{\left(\mathrm{R}_{\mathrm{e}}+\frac{\mathrm{R}_{\mathrm{e}}}{2}\right)^{2}} \\
& \mathrm{~W}^{\prime}=\mathrm{m} \frac{\mathrm{GM}}{\mathrm{R}_{\mathrm{e}}^{2}}\left(\frac{4}{9}\right)=18 \times \frac{4}{9}=8 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{W}^{\prime}=8 \mathrm{~N}
$$

15. Find the value of currents i_{4} and i_{5}

(1) $\frac{2}{5}, \frac{8}{5}$
(2) $\frac{8}{5}, \frac{2}{5}$
(3) $\frac{3}{5}, \frac{6}{5}$
(4) $\frac{1}{5}, \frac{4}{5}$

Ans. (2)

Uniesshing Poteminal
Sol. $\quad \mathrm{R}_{\mathrm{eq}}=\frac{2 \times 2}{2+2}+3+\frac{5 \times 20}{5+20}+1+3$
$\mathrm{R}_{\mathrm{eq}}=1+3+4+1+3=12 \Omega$
$\mathrm{i}_{\text {circuit }}=\frac{24}{\mathrm{R}_{\text {eq }}}=\frac{24}{12}=2 \mathrm{~A}$
$\mathrm{i}_{4}=\mathrm{i}_{\text {criruitit }} \frac{(20)}{20+5}=2 \times \frac{20}{25}=\frac{8}{5} \mathrm{~A}$
$\mathrm{i}_{5}=\mathrm{i}_{\text {circuit }} \frac{(5)}{20+5}=\frac{2 \times 5}{25}=\frac{2}{5} \mathrm{~A}$
Ans. $\left(\frac{8}{5}, \frac{2}{5}\right)$
16. Statement-1 : In photodiode, the intensity of light is measured while reverse biasing the photodiode.

Statement-2 : Forward bias current is more than reverse bias current in PN junction.
(1) TF
(2) TT
(3) FF
(4) FT

Ans. (2)
17. A force of 250 N is applied on a wire as shown
$\left[\right.$ Young Modulus $=10^{10} \mathrm{~N} / \mathrm{m}^{2}$, Area $\left.=6.25 \times 10^{-4} \mathrm{~m}^{2}\right]$. Find extension (in cm) is spring?
щщщщии
$\mathrm{F}=250 \mathrm{~N}$
Ans. 0.4
Sol. $\quad \mathrm{F}=\mathrm{Kx}$
$250=\frac{\gamma \mathrm{A}}{\ddots} \mathrm{x}$
$250=\frac{10^{10} \times 6.25 \times 10^{-4} \mathrm{x}}{100}$
$\mathrm{x}=4 \times 10^{-3} \mathrm{~m}$
$\mathrm{x}=0.4 \mathrm{~cm}$

Unicoshoing Poteminal
18. Match the column.

Column-I

(a) h (Planck's constant)
(b) $\quad \mathrm{P}$ (momentum)
(c) V (stopping potential)
(d) ϕ (work function)

Column-II

(P) $\quad\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]$
(Q) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}\right]$
(R) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(S) $\quad\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$

Choose the correct option
(1) (a) $\rightarrow \mathrm{Q}$, (b) $\rightarrow \mathrm{P}$, (c) $\rightarrow \mathrm{S}$, (d) $\rightarrow \mathrm{R}$
(2) (a) $\rightarrow P$, (b) $\rightarrow \mathrm{Q}$, (c) $\rightarrow \mathrm{R}$, (d) $\rightarrow \mathrm{S}$
(3) (a) $\rightarrow \mathrm{R}$, (b) $\rightarrow \mathrm{P}$, (c) $\rightarrow \mathrm{S}$, (d) $\rightarrow \mathrm{Q}$
(4) (a) $\rightarrow \mathrm{S}$, (b) $\rightarrow \mathrm{P}$, (c) $\rightarrow \mathrm{Q}$, (d) $\rightarrow \mathrm{R}$

Ans. (1)
Sol. h(Planck's constant)
(a) $\mathrm{E}=\mathrm{h} \nu$

$$
\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\mathrm{h}=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]=\mathrm{h}
$$

(b) $\quad \mathrm{P}$ (momentum)

$$
\mathrm{P}=\mathrm{mv}=[\mathrm{m}]\left[\mathrm{LT}^{-1}\right]=\left[\mathrm{MLT}^{-1}\right]
$$

(c) $\quad \mathrm{V}_{\mathrm{s}}$ (stopping potential)

$$
\mathrm{V}_{\mathrm{s}}=\mathrm{Ed}=\frac{\mathrm{Fd}}{\mathrm{q}}=\frac{\left[\mathrm{M}^{\mathrm{L}} \mathrm{~L}^{\mathrm{L}} \mathrm{~T}^{-2}\right][\mathrm{L}]}{[\mathrm{AT}]}=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]
$$

(d) Work function (ϕ)

$$
\begin{aligned}
& \phi=\text { Energy } \\
& \phi=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]
\end{aligned}
$$

19. An Electromagnetic wave propagation vector \vec{K} and electric field \vec{E}. If ω is the angular frequency then the value of the magnetic field is?
(1) $\omega(\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}})$
(2) $\frac{I}{\omega}(\overrightarrow{\mathrm{~K}} \times \overrightarrow{\mathrm{E}})$
(3) $\overrightarrow{\mathrm{K}} \times \overrightarrow{\mathrm{E}}$
(4) $\vec{E} \times \vec{K}$

Ans. (3)

Sol. $\mathrm{C}=\frac{\mathrm{E}}{\mathrm{B}}$ and $\mathrm{C}=\frac{\omega}{\mathrm{K}}$
$\frac{\omega}{\mathrm{K}}=\frac{\mathrm{E}}{\mathrm{B}} \Rightarrow \mathrm{B}=\frac{\mathrm{EK}}{\omega}$
and $(\vec{K} \times \vec{E})$ is direction of propagation of \vec{B}.
20. A signal of square shape is superimposed with a carrier wave $y_{c}=2 \sin \left(\omega_{c} t-k x\right)$, then modulation index of amplitude modulated wave is

(1) $1: 2$
(2) $1: 4$
(3) $4: 1$
(4) $2 \% 1$

Ans. (1)
Sol. $\quad \mu=\frac{\mathrm{A}_{\mathrm{m}}}{\mathrm{A}_{\mathrm{c}}}=\frac{1}{2}$
21. Statement 1 : If temperature of a gas is increased from $-73^{\circ} \mathrm{C}$ to $527^{\circ} \mathrm{C}$ then its rms velocity becomes double.

Statement 2 : Product of pressure and volume is equal to translational kinetic energy of an ideal gas.
(1) Statement 1 is true, statement-II is true
(2) Statement 1 is false, statement-II is true
(3) Statement 1 is true, statement-II is false
(4) Statement 1 is false, statement-II is false

Ans. (3)
Sol. Statement-1 $\quad \mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{0}}}$

$$
\begin{aligned}
\frac{\mathrm{V}_{\mathrm{ms}_{1}}}{\mathrm{~V}_{\mathrm{ms}_{2}}} & =\sqrt{\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}}=\sqrt{\frac{200}{800}}=\frac{1}{2} \\
& 2 \mathrm{~V}_{\mathrm{mss}_{1}}=\mathrm{V}_{\mathrm{mss}_{2}}
\end{aligned}
$$

Statement-2 K. $\varepsilon_{\mathrm{T}}=\frac{3}{2} \mathrm{PV}$
22. Calculate the ratio of quality factor and band width for the following circuit.

Ans. 8
Sol. For an RLC circuit
band with $=\frac{\mathrm{R}}{\mathrm{L}}=\frac{5}{0.2} \mathrm{~Hz}$
for an RLC circuit factor $\frac{\sqrt{\mathrm{L}}}{\mathrm{R} \sqrt{\mathrm{C}}}=\frac{\sqrt{0.2}}{5 \times \sqrt{0.2} \times 10^{-6}}=200$
$\frac{\mathrm{Q}}{\mathrm{B} \text { width }}=\frac{200}{25}=\frac{8}{1}$
23. A radioactive substance ${ }_{84}^{218} \mathrm{X}$ undergoes following decay:

Then product y is :
(1) ${ }_{84}^{210} \mathrm{Y}$
(2) ${ }_{80}^{210} \mathrm{Y}$
(3) ${ }_{84}^{208} \mathrm{Y}$
(4) ${ }_{82}^{210} \mathrm{Y}$

Ans. (2)
Sol. By mass conservation : $218-4 \times 2=210$
By Charge conservation : $84-2 \times 2+(-1)+1 \times 1=80$
24. 1 gm liquid is converted into vapour under $3 \times 10^{5} \mathrm{~Pa} .10 \%$ of heat is used to expand volume by $1600 \mathrm{~cm}^{3}$. What is the increase in internal energy:-
(1) 4800
(2) 4320
(3) 4300
(4) 400

Ans. (2)
Sol. 10% of heat is used in expansion
Rest 90% will increase internal energy
$\mathrm{Q} \times \frac{10}{100}=\mathrm{P} . \Delta \mathrm{V}=3 \times 10^{5} \times 1600 \times 10^{-6}$
$0.1 \mathrm{Q}=48 \times 10=480$
$\mathrm{Q}=4800 \mathrm{~J}$
$\Delta \mathrm{U}=0.9 \mathrm{Q}=0.9 \times 4800=4320 \mathrm{~J}$
25. Choose the correct option based on the following statements
(a) Photoelectric effect is explained by wave theory
(b) Stopping potential may depend on work function
(c) If intensity of light increases then photoelectric current also increases
(d) If intensity of light increases then maximum kinetic energy of photoelectrons increases.
(1) (a, d)
(2) (a, c)
(3) c
(2) (b, c, d)

Ans (3)
Basic Theory
26. If $\dot{A}=3 \hat{i}-2 \hat{j}+b \hat{k}$ and $\dot{B}=a \hat{i}+\frac{7}{2} \hat{j}+2 \hat{k}$ and $\dot{A} \& \dot{B}$ are perpendicular to each other, also $2 a-3 b=-4$. If $\frac{a}{b}=\frac{x}{2}$. The value of x is ?

Ans. (1)
Sol. $\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}=0$
$3 a-7+2 b=0$
$3 a+2 b=7$
$\Rightarrow \mathrm{a}=1 \& \mathrm{~b}=2$

\#\#l|Tkipooritaiyyari

ADMISSIONS OPEN

(Session 2023-24)
JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Scholarship up to $\mathbf{9 0 \%}$

Test on Every SUNDAY

